If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16(x^2)+112(x)+84=0
a = -16; b = 112; c = +84;
Δ = b2-4ac
Δ = 1122-4·(-16)·84
Δ = 17920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{17920}=\sqrt{256*70}=\sqrt{256}*\sqrt{70}=16\sqrt{70}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(112)-16\sqrt{70}}{2*-16}=\frac{-112-16\sqrt{70}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(112)+16\sqrt{70}}{2*-16}=\frac{-112+16\sqrt{70}}{-32} $
| 10j=14-3j | | 6p^2+7p-8=0 | | 2x+17+5x=360 | | 2/3-3k/4=71/12 | | 20x=90+5x | | 2.5=c/0.3+1.7 | | 18=3y+4 | | 3+1.20c=13.50 | | 2+2+4+6,667=10x-75 | | (2x-1)-2(3x-5)=7 | | A/7x+5=3x+13 | | x-1+x=-4+2x+3 | | 7(x+5)=9x-7 | | 32=16^x+2 | | 15+3/2t=21 | | x=2-8/5 | | 3(b+5)=15 | | 3x=2=12-17 | | 22-(2c+4)=2(c | | 3p^2–8p–11=0 | | 3n2-1=12n+8 | | 27x+46=32x+21 | | 2x+12=60x | | 4x+1.5=38.00 | | 3/2(x+4)+1=1/4(x+3) | | -17c−4c+-6=15 | | 5(8x+4=300 | | 2|4-3x|-5=11 | | 6+3×(12+x)=54 | | 4(n-4)=60 | | -4x(x^2-1)+1=0 | | 5x-x=x-x+16 |